Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
BMC Infect Dis ; 22(1): 682, 2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-2214535

ABSTRACT

BACKGROUND: Immunization against the coronavirus disease 2019 (COVID-19) began in January 2021 in Iran; nonetheless, due to a lack of vaccination among children under 12, this age group is still at risk of SARS-CoV-2 infection and its complications. CASE PRESENTATION: SARS-CoV-2 infection was diagnosed in a 6-year-old girl who had previously been healthy but had developed a fever and pancytopenia. The bone marrow aspiration/biopsy demonstrated just hypocellular marrow without signs of leukemia. She was worked up for primary and secondary causes of pancytopenia. Except for a repeated reactive HIV antibody/Ag P24 assay, all test results were inconclusive. After a thorough diagnostic investigation, the cross-reactivity of the HIV antibody/Ag P24 test with SARS-CoV-2 antibodies was confirmed. The patient did not develop any COVID-19-related signs and symptoms, but she did get a severe invasive fungal infection and neutropenic enterocolitis. She died as a result of disseminated intravascular coagulopathy. CONCLUSION: It is critical to recognize children infected with SARS-CoV-2 who exhibit atypical clinical manifestations of COVID-19, such as persistent pancytopenia. SARS-CoV-2 infection can cause severe and deadly consequences in children; thus, pediatricians should be aware of COVID-19's unusual signs and symptoms mimicking other conditions such as aplastic anemia.


Subject(s)
Anemia, Aplastic , COVID-19 , Enterocolitis, Neutropenic , HIV Infections , Invasive Fungal Infections , Pancytopenia , Anemia, Aplastic/etiology , Bone Marrow/pathology , COVID-19/complications , Child , Enterocolitis, Neutropenic/complications , Female , HIV Infections/complications , Humans , Invasive Fungal Infections/complications , Pancytopenia/diagnosis , Pancytopenia/etiology , SARS-CoV-2
2.
Comput Biol Med ; 147: 105709, 2022 08.
Article in English | MEDLINE | ID: covidwho-1944685

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the contagious coronavirus disease 2019 (COVID-19) which was first identified in Wuhan, China, in December 2019. Around the world, many researchers focused their research on identifying inhibitors against the druggable SARS-CoV-2 targets. The reported genomic mutations have a direct effect on the receptor-binding domain (RBD), which interacts with host angiotensin-converting enzyme 2 (ACE-2) for viral cell entry. These mutations, some of which are variants of concern (VOC), lead to increased morbidity and mortality rates. The newest variants including B.1.617.2 (Delta), AY.1 (Delta plus), and C.37 (Lambda) were considered in this study. Thus, an exhaustive structure-based virtual screening of a ligand library (in which FDA approved drugs are also present) using the drug-likeness screening, molecular docking, ADMET profiling was performed followed by molecular dynamics (MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculation to identify compounds or drugs can be repurposed for inhibiting the wild type, Delta, Delta plus and Lambda variants of RBD of the spike protein. Based on the virtual screening steps, two FDA approved drugs, Atovaquone (atv) and Praziquantel (prz), were selected and repurposed as the best candidates of SARS-CoV-2 RBD inhibitors. Molecular docking results display that both atv and prz contribute in different interaction with binding site residues (Gln493, Asn501 and Gly502 in the hydrogen bond formation, Phe490 and Tyr505 in the π- π stacking and Tyr449, Ser494, and Phe497 in the vdW interactions) in the wild type, Delta, Delta plus and Lambda variants of RBD of the spike protein. MD simulations revealed that among the eight studied complexes, the wild type-atv and Delta-prz complexes have the most structural stability over the simulation time. Furthermore, MM-PBSA calculation showed that in the atv containing complexes, highest binding affinity is related to the wild type-atv complex and in the prz containing complexes, it is related to the Delta-prz complex. The validation of docking results was done by comparing with experimental data (heparin in complex with wild type and Delta variants). Also, comparison of the obtained results with the result of simulation of the k22 with the studied proteins showed that atv and prz are suitable inhibitors for these proteins, especially wild type t and Delta variant, respectively. Thus, we found that atv and prz are the best candidate for inhibition of wild type and Delta variant of the spike protein. Also, atv can be an appropriate inhibitor for the Lambda variant. Obtained in silico results may help the development of new anti-COVID-19 drugs.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Adipates , COVID-19/genetics , Drug Repositioning/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation/genetics , Peptidyl-Dipeptidase A/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Succinates
SELECTION OF CITATIONS
SEARCH DETAIL